

PyKeePass

[image: _images/pykeepass.svg]
 [https://travis-ci.org/libkeepass/pykeepass][image: _images/pykeepass:matrix.org.svg]
 [https://matrix.to/#/#pykeepass:matrix.org]This library allows you to write entries to a KeePass database.

Come chat at #pykeepass on Freenode or #pykeepass:matrix.org [https://matrix.to/#/%23pykeepass:matrix.org] on Matrix.

Example

from pykeepass import PyKeePass

load database
>>> kp = PyKeePass('db.kdbx', password='somePassw0rd')

find any group by its name
>>> group = kp.find_groups(name='social', first=True)

get the entries in a group
>>> group.entries
[Entry: "social/facebook (myusername)", Entry: "social/twitter (myusername)"]

find any entry by its title
>>> entry = kp.find_entries(title='facebook', first=True)

retrieve the associated password
>>> entry.password
's3cure_p455w0rd'

update an entry
>>> entry.notes = 'primary facebook account'

create a new group
>>> group = kp.add_group(kp.root_group, 'email')

create a new entry
>>> kp.add_entry(group, 'gmail', 'myusername', 'myPassw0rdXX')
Entry: "email/gmail (myusername)"

save database
>>> kp.save()

Finding Entries

find_entries (title=None, username=None, password=None, url=None, notes=None, path=None, uuid=None, tags=None, string=None, group=None, recursive=True, regex=False, flags=None, history=False, first=False)

Returns entries which match all provided parameters, where title, username, password, url, notes, path, and autotype_sequence are strings, string is a dict, autotype_enabled is a boolean, uuid is a uuid.UUID and tags is a list of strings. This function has optional regex boolean and flags string arguments, which means to interpret search strings as XSLT style [https://www.xml.com/pub/a/2003/06/04/tr.html] regular expressions with flags [https://www.w3.org/TR/xpath-functions/#flags].

The path string is a full path to an entry (ex. 'foobar_group/foobar_entry'). This implies first=True. All other arguments are ignored when this is given. This is useful for handling user input.

The string dict allows for searching custom string fields. ex. {'custom_field1': 'custom value', 'custom_field2': 'custom value'}

The group argument determines what Group to search under, and the recursive boolean controls whether to search recursively.

The history (default False) boolean controls whether history entries should be included in the search results.

The first (default False) boolean controls whether to return the first matched item, or a list of matched items.

	if first=False, the function returns a list of Entry s or [] if there are no matches

	if first=True, the function returns the first Entry match, or None if there are no matches

entries

a flattened list of all entries in the database

>>> kp.entries
[Entry: "foo_entry (myusername)", Entry: "foobar_entry (myusername)", Entry: "social/gmail (myusername)", Entry: "social/facebook (myusername)"]

>>> kp.find_entries(title='gmail', first=True)
Entry: "social/gmail (myusername)"

>>> kp.find_entries(title='foo.*', regex=True)
[Entry: "foo_entry (myusername)", Entry: "foobar_entry (myusername)"]

>>> entry = kp.find_entries(title='foo.*', url='.*facebook.*', regex=True, first=True)
>>> entry.url
'facebook.com'
>>> entry.title
'foo_entry'

>>> group = kp.find_group(name='social', first=True)
>>> kp.find_entries(title='facebook', group=group, recursive=False, first=True)
Entry: "social/facebook (myusername)"

Finding Groups

find_groups (name=None, path=None, uuid=None, notes=None, group=None, recursive=True, regex=False, flags=None, first=False)

where name, path, and notes are strings, uuid is a uuid.UUID. This function has optional regex boolean and flags string arguments, which means to interpret search strings as XSLT style [https://www.xml.com/pub/a/2003/06/04/tr.html] regular expressions with flags [https://www.w3.org/TR/xpath-functions/#flags].

The path string is a full path to a group (ex. 'foobar_group/sub_group'). This implies first=True. All other arguments are ignored when this is given. This is useful for handling user input.

The group argument determines what Group to search under, and the recursive boolean controls whether to search recursively.

The first (default False) boolean controls whether to return the first matched item, or a list of matched items.

	if first=False, the function returns a list of Group s or [] if there are no matches

	if first=True, the function returns the first Group match, or None if there are no matches

root_group

the Root group to the database

groups

a flattened list of all groups in the database

>>> kp.groups
[Group: "foo", Group "foobar", Group: "social", Group: "social/foo_subgroup"]

>>> kp.find_groups(name='foo', first=True)
Group: "foo"

>>> kp.find_groups(name='foo.*', regex=True)
[Group: "foo", Group "foobar"]

>>> kp.find_groups(path='social/', regex=True)
[Group: "social", Group: "social/foo_subgroup"]

>>> kp.find_groups(name='social', first=True).subgroups
[Group: "social/foo_subgroup"]

>>> kp.root_group
Group: "/"

Adding Entries

add_entry (destination_group, title, username, password, url=None, notes=None, tags=None, expiry_time=None, icon=None, force_creation=False)

delete_entry (entry)

move_entry (entry, destination_group)

where destination_group is a Group instance. entry is an Entry instance. title, username, password, url, notes, tags, icon are strings. expiry_time is a datetime instance.

If expiry_time is a naive datetime object (i.e. expiry_time.tzinfo is not set), the timezone is retrieved from dateutil.tz.gettz().

add a new entry to the Root group
>>> kp.add_entry(kp.root_group, 'testing', 'foo_user', 'passw0rd')
Entry: "testing (foo_user)"

add a new entry to the social group
>>> group = find_groups(name='social', first=True)
>>> entry = kp.add_entry(group, 'testing', 'foo_user', 'passw0rd')
Entry: "testing (foo_user)"

save the database
>>> kp.save()

delete an entry
>>> kp.delete_entry(entry)

move an entry
>>> kp.move_entry(entry, kp.root_group)

save the database
>>> kp.save()

Adding Groups

add_group (destination_group, group_name, icon=None, notes=None)

delete_group (group)

move_group (group, destination_group)

destination_group and group are instances of Group. group_name is a string

add a new group to the Root group
>>> group = kp.add_group(kp.root_group, 'social')

add a new group to the social group
>>> group2 = kp.add_group(group, 'gmail')
Group: "social/gmail"

save the database
>>> kp.save()

delete a group
>>> kp.delete_group(group)

move a group
>>> kp.move_group(group2, kp.root_group)

save the database
>>> kp.save()

Attachments

In this section, binary refers to the bytes of the attached data (stored at the root level of the database), while attachment is a reference to a binary (stored in an entry). A binary can have none, one or many attachments.

add_binary (data, compressed=True, protected=True)

where data is bytes. Adds a blob of data to the database. The attachment reference must still be added to an entry (see below). compressed only applies to KDBX3 and protected only applies to KDBX4. Returns id of attachment.

delete_binary (id)

where id is an int. Removes binary data from the database and deletes any attachments that reference it. Since attachments reference binaries by their positional index, attachments that reference binaries with id > id will automatically be decremented.

find_attachments (id=None, filename=None, element=None, recursive=True, regex=False, flags=None, history=False, first=False)

where id is an int, filename is a string, and element is an Entry or Group to search under.

	if first=False, the function returns a list of Attachment s or [] if there are no matches

	if first=True, the function returns the first Attachment match, or None if there are no matches

binaries

list of bytestrings containing binary data. List index corresponds to attachment id.

attachments

list containing all Attachment s in the database.

Entry.add_attachment (id, filename)

where id is an int and filename is a string. Creates a reference using the given filename to a database binary. The existence of a binary with the given id is not checked. Returns Attachment.

Entry.delete_attachment (attachment)

where attachment is an Attachment. Deletes a reference to a database binary.

Entry.attachments

list of Attachment s for this Entry.

Attachment.id

id of data that this attachment points to

Attachment.filename

string representing this attachment

Attachment.data

the data that this attachment points to. Raises BinaryError if data does not exist.

Attachment.entry

the entry that this attachment is attached to

>>> e = kp.add_entry(kp.root_group, title='foo', username='', password='')

add attachment data to the db
>>> binary_id = kp.add_binary(b'Hello world')

>>> kp.binaries
[b'Hello world']

add attachment reference to entry
>>> a = e.add_attachment(binary_id, 'hello.txt')
>>> a
Attachment: 'hello.txt' -> 0

access attachments
>>> a
Attachment: 'hello.txt' -> 0
>>> a.id
0
>>> a.filename
'hello.txt'
>>> a.data
b'Hello world'
>>> e.attachments
[Attachment: 'hello.txt' -> 0]

list all attachments in the database
>>> kp.attachments
[Attachment: 'hello.txt' -> 0]

search attachments
>>> kp.find_attachments(filename='hello.txt')
[Attachment: 'hello.txt' -> 0]

delete attachment reference
>>> e.delete_attachment(a)

or, delete both attachment reference and binary
>>> kp.delete_binary(binary_id)

Miscellaneous

read (filename=None, password=None, keyfile=None, transformed_key=None)

where filename, password, and keyfile are strings. filename is the path to the database, password is the master password string, and keyfile is the path to the database keyfile. At least one of password and keyfile is required. Alternatively, the derived key can be supplied directly through transformed_key.

Can raise CredentialsError, HeaderChecksumError, or PayloadChecksumError.

save (filename=None)

where filename is the path of the file to save to. If filename is not given, the path given in read will be used.

password

string containing database password. Can also be set. Use None for no password.

keyfile

string containing path to the database keyfile. Can also be set. Use None for no keyfile.

version

tuple containing database version. e.g. (3, 1) is a KDBX version 3.1 database.

encryption_algorithm

string containing algorithm used to encrypt database. Possible values are aes256, chacha20, and twofish.

create_database (filename, password=None, keyfile=None, transformed_key=None)

create a new database at filename with supplied credentials. Returns PyKeePass object

Tests

To run them issue python -m unittest discover in the repository.

Indices and tables

	Index

	Module Index

	Search Page

pykeepass

	
class pykeepass.pykeepass.PyKeePass(filename, password=None, keyfile=None, transformed_key=None)

	Open a KeePass database

	Args:

	
	filename (str, optional): path to database or stream object.

	If None, the path given when the database was opened is used.

	password (str, optional): database password. If None,

	database is assumed to have no password

	keyfile (str, optional): path to keyfile. If None,

	database is assumed to have no keyfile

	transformed_key (bytes, optional): precomputed transformed

	key.

	Raises:

	
	CredentialsError: raised when password/keyfile or transformed key

	are wrong

	HeaderChecksumError: raised when checksum in database header is

	is wrong. e.g. database tampering or file corruption

	PayloadChecksumError: raised when payload blocks checksum is wrong,

	e.g. corruption during database saving

	Todo:

	
	raise, no filename provided, database not open

	
dump_xml(filename)

	Dump the contents of the database to file as XML

	Args:

	filename (str): path to output file

	
encryption_algorithm

	str: encryption algorithm used by database during decryption.
Can be one of ‘aes256’, ‘chacha20’, or ‘twofish’.

	
entries

	list of Entry: list of all Entry objects in database,
excluding history

	
groups

	list of Group: list of all Group objects in database

	
kdf_algorithm

	str: key derivation algorithm used by database during decryption.
Can be one of ‘aeskdf’, ‘argon2’, or ‘aeskdf’

	
read(filename=None, password=None, keyfile=None, transformed_key=None)

	See class docstring.

	Todo:

	
	raise, no filename provided, database not open

	
root_group

	Group: root Group of database

	
save(filename=None, transformed_key=None)

	Save current database object to disk.

	Args:

	
	filename (str, optional): path to database or stream object.

	If None, the path given when the database was opened is used.

	transformed_key (bytes, optional): precomputed transformed

	key.

	
transformed_key

	bytes: transformed key used in database decryption. May be cached
and passed to open for faster database opening

	
tree

	lxml.etree._ElementTree: database XML payload

	
version

	tuple: Length 2 tuple of ints containing major and minor versions.
Generally (3, 1) or (4, 0).

	
xml()

	Get XML part of database as string

	Returns:

	str: XML payload section of database.

group

	
class pykeepass.group.Group(name=None, element=None, icon=None, notes=None, kp=None, expires=None, expiry_time=None)

	

entry

	
class pykeepass.entry.Entry(title=None, username=None, password=None, url=None, notes=None, tags=None, expires=False, expiry_time=None, icon=None, autotype_sequence=None, autotype_enabled=True, element=None, kp=None)

	
	
ref(attribute)

	Create reference to an attribute of this element.

	
save_history()

	Save the entry in its history

	
touch(modify=False)

	Update last access time of an entry

attachment

icons

exceptions

	
exception pykeepass.exceptions.BinaryError

	

	
exception pykeepass.exceptions.CredentialsError

	

	
exception pykeepass.exceptions.HeaderChecksumError

	

	
exception pykeepass.exceptions.PayloadChecksumError

	

baseelement

	
class pykeepass.baseelement.BaseElement(element=None, kp=None, icon=None, expires=False, expiry_time=None)

	Entry and Group inherit from this class

	
uuid

	Returns uuid of this element as a uuid.UUID object

kdbx_parsing.common

	
class pykeepass.kdbx_parsing.common.AES256Payload(subcon)

	

	
class pykeepass.kdbx_parsing.common.ARCFourVariantStream(protected_stream_key, subcon)

	

	
class pykeepass.kdbx_parsing.common.ChaCha20Payload(subcon)

	

	
class pykeepass.kdbx_parsing.common.ChaCha20Stream(protected_stream_key, subcon)

	

	
class pykeepass.kdbx_parsing.common.Concatenated(subcon)

	Data Blocks <—> Bytes

	
exception pykeepass.kdbx_parsing.common.CredentialsError

	

	
class pykeepass.kdbx_parsing.common.Decompressed(subcon)

	Compressed Bytes <—> Decompressed Bytes

	
class pykeepass.kdbx_parsing.common.DecryptedPayload(subcon)

	Encrypted Bytes <—> Decrypted Bytes

	
class pykeepass.kdbx_parsing.common.DynamicDict(key, subcon, lump=[])

	ListContainer <—> Container
Convenience mapping so we dont have to iterate ListContainer to find
the right item

FIXME: lump kwarg was added to get around the fact that InnerHeader is
not truly a dict. We lump all ‘binary’ InnerHeaderItems into a single list

	
exception pykeepass.kdbx_parsing.common.HeaderChecksumError

	

	
exception pykeepass.kdbx_parsing.common.PayloadChecksumError

	

	
class pykeepass.kdbx_parsing.common.Salsa20Stream(protected_stream_key, subcon)

	

	
class pykeepass.kdbx_parsing.common.TwoFishPayload(subcon)

	

	
pykeepass.kdbx_parsing.common.Unprotect(protected_stream_id, protected_stream_key, subcon)

	Select stream cipher based on protected_stream_id

	
class pykeepass.kdbx_parsing.common.UnprotectedStream(protected_stream_key, subcon)

	lxml etree <—> unprotected lxml etree
Iterate etree for Protected elements and decrypt using cipher
provided by get_cipher

	
class pykeepass.kdbx_parsing.common.XML(subcon)

	Bytes <—> lxml etree

	
pykeepass.kdbx_parsing.common.aes_kdf(key, rounds, key_composite)

	Set up a context for AES128-ECB encryption to find transformed_key

	
pykeepass.kdbx_parsing.common.compute_key_composite(password=None, keyfile=None)

	Compute composite key.
Used in header verification and payload decryption.

	
pykeepass.kdbx_parsing.common.compute_master(context)

	Computes master key from transformed key and master seed.
Used in payload decryption.

kdbx_parsing.kdbx

kdbx_parsing.kdbx3

	
pykeepass.kdbx_parsing.kdbx3.compute_transformed(context)

	Compute transformed key for opening database

kdbx_parsing.kdbx4

	
pykeepass.kdbx_parsing.kdbx4.compute_header_hmac_hash(context)

	Compute HMAC-SHA256 hash of header.
Used to prevent header tampering.

	
pykeepass.kdbx_parsing.kdbx4.compute_payload_block_hash(this)

	Compute hash of each payload block.
Used to prevent payload corruption and tampering.

	
pykeepass.kdbx_parsing.kdbx4.compute_transformed(context)

	Compute transformed key for opening database

kdbx_parsing.pytwofish

kdbx_parsing.twofish

	
pykeepass.kdbx_parsing.twofish.Twofish

	alias of pykeepass.kdbx_parsing.twofish.python_Twofish

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pykeepass	

 	
 	
 pykeepass.attachment	

 	
 	
 pykeepass.baseelement	

 	
 	
 pykeepass.entry	

 	
 	
 pykeepass.exceptions	

 	
 	
 pykeepass.group	

 	
 	
 pykeepass.icons	

 	
 	
 pykeepass.kdbx_parsing.common	

 	
 	
 pykeepass.kdbx_parsing.kdbx	

 	
 	
 pykeepass.kdbx_parsing.kdbx3	

 	
 	
 pykeepass.kdbx_parsing.kdbx4	

 	
 	
 pykeepass.kdbx_parsing.pytwofish	

 	
 	
 pykeepass.kdbx_parsing.twofish	

 	
 	
 pykeepass.pykeepass	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | K
 | P
 | R
 | S
 | T
 | U
 | V
 | X

A

 	
 	AES256Payload (class in pykeepass.kdbx_parsing.common)

 	
 	aes_kdf() (in module pykeepass.kdbx_parsing.common)

 	ARCFourVariantStream (class in pykeepass.kdbx_parsing.common)

B

 	
 	BaseElement (class in pykeepass.baseelement)

 	
 	BinaryError

C

 	
 	ChaCha20Payload (class in pykeepass.kdbx_parsing.common)

 	ChaCha20Stream (class in pykeepass.kdbx_parsing.common)

 	compute_header_hmac_hash() (in module pykeepass.kdbx_parsing.kdbx4)

 	compute_key_composite() (in module pykeepass.kdbx_parsing.common)

 	compute_master() (in module pykeepass.kdbx_parsing.common)

 	
 	compute_payload_block_hash() (in module pykeepass.kdbx_parsing.kdbx4)

 	compute_transformed() (in module pykeepass.kdbx_parsing.kdbx3)

 	(in module pykeepass.kdbx_parsing.kdbx4)

 	Concatenated (class in pykeepass.kdbx_parsing.common)

 	CredentialsError, [1]

D

 	
 	Decompressed (class in pykeepass.kdbx_parsing.common)

 	DecryptedPayload (class in pykeepass.kdbx_parsing.common)

 	
 	dump_xml() (pykeepass.pykeepass.PyKeePass method)

 	DynamicDict (class in pykeepass.kdbx_parsing.common)

E

 	
 	encryption_algorithm (pykeepass.pykeepass.PyKeePass attribute)

 	
 	entries (pykeepass.pykeepass.PyKeePass attribute)

 	Entry (class in pykeepass.entry)

G

 	
 	Group (class in pykeepass.group)

 	
 	groups (pykeepass.pykeepass.PyKeePass attribute)

H

 	
 	HeaderChecksumError, [1]

K

 	
 	kdf_algorithm (pykeepass.pykeepass.PyKeePass attribute)

P

 	
 	PayloadChecksumError, [1]

 	PyKeePass (class in pykeepass.pykeepass)

 	pykeepass.attachment (module)

 	pykeepass.baseelement (module)

 	pykeepass.entry (module)

 	pykeepass.exceptions (module)

 	pykeepass.group (module)

 	
 	pykeepass.icons (module)

 	pykeepass.kdbx_parsing.common (module)

 	pykeepass.kdbx_parsing.kdbx (module)

 	pykeepass.kdbx_parsing.kdbx3 (module)

 	pykeepass.kdbx_parsing.kdbx4 (module)

 	pykeepass.kdbx_parsing.pytwofish (module)

 	pykeepass.kdbx_parsing.twofish (module)

 	pykeepass.pykeepass (module)

R

 	
 	read() (pykeepass.pykeepass.PyKeePass method)

 	
 	ref() (pykeepass.entry.Entry method)

 	root_group (pykeepass.pykeepass.PyKeePass attribute)

S

 	
 	Salsa20Stream (class in pykeepass.kdbx_parsing.common)

 	
 	save() (pykeepass.pykeepass.PyKeePass method)

 	save_history() (pykeepass.entry.Entry method)

T

 	
 	touch() (pykeepass.entry.Entry method)

 	transformed_key (pykeepass.pykeepass.PyKeePass attribute)

 	
 	tree (pykeepass.pykeepass.PyKeePass attribute)

 	Twofish (in module pykeepass.kdbx_parsing.twofish)

 	TwoFishPayload (class in pykeepass.kdbx_parsing.common)

U

 	
 	Unprotect() (in module pykeepass.kdbx_parsing.common)

 	
 	UnprotectedStream (class in pykeepass.kdbx_parsing.common)

 	uuid (pykeepass.baseelement.BaseElement attribute)

V

 	
 	version (pykeepass.pykeepass.PyKeePass attribute)

X

 	
 	XML (class in pykeepass.kdbx_parsing.common)

 	
 	xml() (pykeepass.pykeepass.PyKeePass method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 PyKeePass

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

