
PyKeePass

Oct 08, 2020

Contents

1 pykeepass 1

2 group 3

3 entry 5

4 attachment 7

5 icons 9

6 exceptions 11

7 baseelement 13

8 kdbx_parsing.common 15

9 kdbx_parsing.kdbx 17

10 kdbx_parsing.kdbx3 19

11 kdbx_parsing.kdbx4 21

12 kdbx_parsing.pytwofish 23

13 kdbx_parsing.twofish 25

14 Example 27

15 Finding Entries 29

16 Finding Groups 31

17 Adding Entries 33

18 Adding Groups 35

19 Attachments 37

20 Miscellaneous 39

i

21 Tests 41

22 Indices and tables 43

Python Module Index 45

Index 47

ii

CHAPTER 1

pykeepass

class pykeepass.pykeepass.PyKeePass(filename, password=None, keyfile=None, trans-
formed_key=None)

Open a KeePass database

Args:

filename (str, optional): path to database or stream object. If None, the path given when the
database was opened is used.

password (str, optional): database password. If None, database is assumed to have no password

keyfile (str, optional): path to keyfile. If None, database is assumed to have no keyfile

transformed_key (bytes, optional): precomputed transformed key.

Raises:

CredentialsError: raised when password/keyfile or transformed key are wrong

HeaderChecksumError: raised when checksum in database header is is wrong. e.g. database tam-
pering or file corruption

PayloadChecksumError: raised when payload blocks checksum is wrong, e.g. corruption during
database saving

Todo:

• raise, no filename provided, database not open

dump_xml(filename)
Dump the contents of the database to file as XML

Args: filename (str): path to output file

encryption_algorithm
str: encryption algorithm used by database during decryption. Can be one of ‘aes256’, ‘chacha20’, or
‘twofish’.

entries
list of Entry: list of all Entry objects in database, excluding history

1

PyKeePass

groups
list of Group: list of all Group objects in database

kdf_algorithm
str: key derivation algorithm used by database during decryption. Can be one of ‘aeskdf’, ‘argon2’, or
‘aeskdf’

read(filename=None, password=None, keyfile=None, transformed_key=None)
See class docstring.

Todo:

• raise, no filename provided, database not open

root_group
Group: root Group of database

save(filename=None, transformed_key=None)
Save current database object to disk.

Args:

filename (str, optional): path to database or stream object. If None, the path given when the
database was opened is used.

transformed_key (bytes, optional): precomputed transformed key.

transformed_key
bytes: transformed key used in database decryption. May be cached and passed to open for faster database
opening

tree
lxml.etree._ElementTree: database XML payload

version
tuple: Length 2 tuple of ints containing major and minor versions. Generally (3, 1) or (4, 0).

xml()
Get XML part of database as string

Returns: str: XML payload section of database.

2 Chapter 1. pykeepass

CHAPTER 2

group

class pykeepass.group.Group(name=None, element=None, icon=None, notes=None, kp=None, ex-
pires=None, expiry_time=None)

3

PyKeePass

4 Chapter 2. group

CHAPTER 3

entry

class pykeepass.entry.Entry(title=None, username=None, password=None, url=None,
notes=None, tags=None, expires=False, expiry_time=None,
icon=None, autotype_sequence=None, autotype_enabled=True,
element=None, kp=None)

ref(attribute)
Create reference to an attribute of this element.

save_history()
Save the entry in its history

touch(modify=False)
Update last access time of an entry

5

PyKeePass

6 Chapter 3. entry

CHAPTER 4

attachment

7

PyKeePass

8 Chapter 4. attachment

CHAPTER 5

icons

9

PyKeePass

10 Chapter 5. icons

CHAPTER 6

exceptions

exception pykeepass.exceptions.BinaryError

exception pykeepass.exceptions.CredentialsError

exception pykeepass.exceptions.HeaderChecksumError

exception pykeepass.exceptions.PayloadChecksumError

11

PyKeePass

12 Chapter 6. exceptions

CHAPTER 7

baseelement

class pykeepass.baseelement.BaseElement(element=None, kp=None, icon=None, ex-
pires=False, expiry_time=None)

Entry and Group inherit from this class

uuid
Returns uuid of this element as a uuid.UUID object

13

PyKeePass

14 Chapter 7. baseelement

CHAPTER 8

kdbx_parsing.common

class pykeepass.kdbx_parsing.common.AES256Payload(subcon)

class pykeepass.kdbx_parsing.common.ARCFourVariantStream(protected_stream_key,
subcon)

class pykeepass.kdbx_parsing.common.ChaCha20Payload(subcon)

class pykeepass.kdbx_parsing.common.ChaCha20Stream(protected_stream_key, subcon)

class pykeepass.kdbx_parsing.common.Concatenated(subcon)
Data Blocks <—> Bytes

exception pykeepass.kdbx_parsing.common.CredentialsError

class pykeepass.kdbx_parsing.common.Decompressed(subcon)
Compressed Bytes <—> Decompressed Bytes

class pykeepass.kdbx_parsing.common.DecryptedPayload(subcon)
Encrypted Bytes <—> Decrypted Bytes

class pykeepass.kdbx_parsing.common.DynamicDict(key, subcon, lump=[])
ListContainer <—> Container Convenience mapping so we dont have to iterate ListContainer to find the right
item

FIXME: lump kwarg was added to get around the fact that InnerHeader is not truly a dict. We lump all ‘binary’
InnerHeaderItems into a single list

exception pykeepass.kdbx_parsing.common.HeaderChecksumError

exception pykeepass.kdbx_parsing.common.PayloadChecksumError

class pykeepass.kdbx_parsing.common.Salsa20Stream(protected_stream_key, subcon)

class pykeepass.kdbx_parsing.common.TwoFishPayload(subcon)

pykeepass.kdbx_parsing.common.Unprotect(protected_stream_id, protected_stream_key, sub-
con)

Select stream cipher based on protected_stream_id

15

PyKeePass

class pykeepass.kdbx_parsing.common.UnprotectedStream(protected_stream_key, sub-
con)

lxml etree <—> unprotected lxml etree Iterate etree for Protected elements and decrypt using cipher provided
by get_cipher

class pykeepass.kdbx_parsing.common.XML(subcon)
Bytes <—> lxml etree

pykeepass.kdbx_parsing.common.aes_kdf(key, rounds, key_composite)
Set up a context for AES128-ECB encryption to find transformed_key

pykeepass.kdbx_parsing.common.compute_key_composite(password=None, keyfile=None)
Compute composite key. Used in header verification and payload decryption.

pykeepass.kdbx_parsing.common.compute_master(context)
Computes master key from transformed key and master seed. Used in payload decryption.

16 Chapter 8. kdbx_parsing.common

CHAPTER 9

kdbx_parsing.kdbx

17

PyKeePass

18 Chapter 9. kdbx_parsing.kdbx

CHAPTER 10

kdbx_parsing.kdbx3

pykeepass.kdbx_parsing.kdbx3.compute_transformed(context)
Compute transformed key for opening database

19

PyKeePass

20 Chapter 10. kdbx_parsing.kdbx3

CHAPTER 11

kdbx_parsing.kdbx4

pykeepass.kdbx_parsing.kdbx4.compute_header_hmac_hash(context)
Compute HMAC-SHA256 hash of header. Used to prevent header tampering.

pykeepass.kdbx_parsing.kdbx4.compute_payload_block_hash(this)
Compute hash of each payload block. Used to prevent payload corruption and tampering.

pykeepass.kdbx_parsing.kdbx4.compute_transformed(context)
Compute transformed key for opening database

21

PyKeePass

22 Chapter 11. kdbx_parsing.kdbx4

CHAPTER 12

kdbx_parsing.pytwofish

23

PyKeePass

24 Chapter 12. kdbx_parsing.pytwofish

CHAPTER 13

kdbx_parsing.twofish

pykeepass.kdbx_parsing.twofish.Twofish
alias of pykeepass.kdbx_parsing.twofish.python_Twofish

This library allows you to write entries to a KeePass database.

Come chat at #pykeepass on Freenode or #pykeepass:matrix.org on Matrix.

25

https://travis-ci.org/libkeepass/pykeepass
https://matrix.to/#/
irc://irc.freenode.net
https://matrix.to/#/%23pykeepass:matrix.org

PyKeePass

26 Chapter 13. kdbx_parsing.twofish

CHAPTER 14

Example

from pykeepass import PyKeePass

load database
>>> kp = PyKeePass('db.kdbx', password='somePassw0rd')

find any group by its name
>>> group = kp.find_groups(name='social', first=True)

get the entries in a group
>>> group.entries
[Entry: "social/facebook (myusername)", Entry: "social/twitter (myusername)"]

find any entry by its title
>>> entry = kp.find_entries(title='facebook', first=True)

retrieve the associated password
>>> entry.password
's3cure_p455w0rd'

update an entry
>>> entry.notes = 'primary facebook account'

create a new group
>>> group = kp.add_group(kp.root_group, 'email')

create a new entry
>>> kp.add_entry(group, 'gmail', 'myusername', 'myPassw0rdXX')
Entry: "email/gmail (myusername)"

save database
>>> kp.save()

27

PyKeePass

28 Chapter 14. Example

CHAPTER 15

Finding Entries

find_entries (title=None, username=None, password=None, url=None, notes=None, path=None, uuid=None,
tags=None, string=None, group=None, recursive=True, regex=False, flags=None, history=False, first=False)

Returns entries which match all provided parameters, where title, username, password, url, notes, path,
and autotype_sequence are strings, string is a dict, autotype_enabled is a boolean, uuid is a uuid.
UUID and tags is a list of strings. This function has optional regex boolean and flags string arguments, which
means to interpret search strings as XSLT style regular expressions with flags.

The path string is a full path to an entry (ex. 'foobar_group/foobar_entry'). This implies first=True.
All other arguments are ignored when this is given. This is useful for handling user input.

The string dict allows for searching custom string fields. ex. {'custom_field1': 'custom value',
'custom_field2': 'custom value'}

The group argument determines what Group to search under, and the recursive boolean controls whether to
search recursively.

The history (default False) boolean controls whether history entries should be included in the search results.

The first (default False) boolean controls whether to return the first matched item, or a list of matched items.

• if first=False, the function returns a list of Entry s or [] if there are no matches

• if first=True, the function returns the first Entry match, or None if there are no matches

entries

a flattened list of all entries in the database

>>> kp.entries
[Entry: "foo_entry (myusername)", Entry: "foobar_entry (myusername)", Entry: "social/
→˓gmail (myusername)", Entry: "social/facebook (myusername)"]

>>> kp.find_entries(title='gmail', first=True)
Entry: "social/gmail (myusername)"

>>> kp.find_entries(title='foo.*', regex=True)
(continues on next page)

29

https://www.xml.com/pub/a/2003/06/04/tr.html
https://www.w3.org/TR/xpath-functions/#flags

PyKeePass

(continued from previous page)

[Entry: "foo_entry (myusername)", Entry: "foobar_entry (myusername)"]

>>> entry = kp.find_entries(title='foo.*', url='.*facebook.*', regex=True, first=True)
>>> entry.url
'facebook.com'
>>> entry.title
'foo_entry'

>>> group = kp.find_group(name='social', first=True)
>>> kp.find_entries(title='facebook', group=group, recursive=False, first=True)
Entry: "social/facebook (myusername)"

30 Chapter 15. Finding Entries

CHAPTER 16

Finding Groups

find_groups (name=None, path=None, uuid=None, notes=None, group=None, recursive=True, regex=False,
flags=None, first=False)

where name, path, and notes are strings, uuid is a uuid.UUID. This function has optional regex boolean and
flags string arguments, which means to interpret search strings as XSLT style regular expressions with flags.

The path string is a full path to a group (ex. 'foobar_group/sub_group'). This implies first=True. All
other arguments are ignored when this is given. This is useful for handling user input.

The group argument determines what Group to search under, and the recursive boolean controls whether to
search recursively.

The first (default False) boolean controls whether to return the first matched item, or a list of matched items.

• if first=False, the function returns a list of Group s or [] if there are no matches

• if first=True, the function returns the first Group match, or None if there are no matches

root_group

the Root group to the database

groups

a flattened list of all groups in the database

>>> kp.groups
[Group: "foo", Group "foobar", Group: "social", Group: "social/foo_subgroup"]

>>> kp.find_groups(name='foo', first=True)
Group: "foo"

>>> kp.find_groups(name='foo.*', regex=True)
[Group: "foo", Group "foobar"]

>>> kp.find_groups(path='social/', regex=True)
[Group: "social", Group: "social/foo_subgroup"]

(continues on next page)

31

https://www.xml.com/pub/a/2003/06/04/tr.html
https://www.w3.org/TR/xpath-functions/#flags

PyKeePass

(continued from previous page)

>>> kp.find_groups(name='social', first=True).subgroups
[Group: "social/foo_subgroup"]

>>> kp.root_group
Group: "/"

32 Chapter 16. Finding Groups

CHAPTER 17

Adding Entries

add_entry (destination_group, title, username, password, url=None, notes=None, tags=None, expiry_time=None,
icon=None, force_creation=False)

delete_entry (entry)

move_entry (entry, destination_group)

where destination_group is a Group instance. entry is an Entry instance. title, username,
password, url, notes, tags, icon are strings. expiry_time is a datetime instance.

If expiry_time is a naive datetime object (i.e. expiry_time.tzinfo is not set), the timezone is retrieved from
dateutil.tz.gettz().

add a new entry to the Root group
>>> kp.add_entry(kp.root_group, 'testing', 'foo_user', 'passw0rd')
Entry: "testing (foo_user)"

add a new entry to the social group
>>> group = find_groups(name='social', first=True)
>>> entry = kp.add_entry(group, 'testing', 'foo_user', 'passw0rd')
Entry: "testing (foo_user)"

save the database
>>> kp.save()

delete an entry
>>> kp.delete_entry(entry)

move an entry
>>> kp.move_entry(entry, kp.root_group)

save the database
>>> kp.save()

33

PyKeePass

34 Chapter 17. Adding Entries

CHAPTER 18

Adding Groups

add_group (destination_group, group_name, icon=None, notes=None)

delete_group (group)

move_group (group, destination_group)

destination_group and group are instances of Group. group_name is a string

add a new group to the Root group
>>> group = kp.add_group(kp.root_group, 'social')

add a new group to the social group
>>> group2 = kp.add_group(group, 'gmail')
Group: "social/gmail"

save the database
>>> kp.save()

delete a group
>>> kp.delete_group(group)

move a group
>>> kp.move_group(group2, kp.root_group)

save the database
>>> kp.save()

35

PyKeePass

36 Chapter 18. Adding Groups

CHAPTER 19

Attachments

In this section, binary refers to the bytes of the attached data (stored at the root level of the database), while attachment
is a reference to a binary (stored in an entry). A binary can have none, one or many attachments.

add_binary (data, compressed=True, protected=True)

where data is bytes. Adds a blob of data to the database. The attachment reference must still be added to an entry (see
below). compressed only applies to KDBX3 and protected only applies to KDBX4. Returns id of attachment.

delete_binary (id)

where id is an int. Removes binary data from the database and deletes any attachments that reference it. Since attach-
ments reference binaries by their positional index, attachments that reference binaries with id > id will automatically
be decremented.

find_attachments (id=None, filename=None, element=None, recursive=True, regex=False, flags=None, his-
tory=False, first=False)

where id is an int, filename is a string, and element is an Entry or Group to search under.

• if first=False, the function returns a list of Attachment s or [] if there are no matches

• if first=True, the function returns the first Attachment match, or None if there are no matches

binaries

list of bytestrings containing binary data. List index corresponds to attachment id.

attachments

list containing all Attachment s in the database.

Entry.add_attachment (id, filename)

where id is an int and filename is a string. Creates a reference using the given filename to a database binary. The
existence of a binary with the given id is not checked. Returns Attachment.

Entry.delete_attachment (attachment)

where attachment is an Attachment. Deletes a reference to a database binary.

Entry.attachments

37

PyKeePass

list of Attachment s for this Entry.

Attachment.id

id of data that this attachment points to

Attachment.filename

string representing this attachment

Attachment.data

the data that this attachment points to. Raises BinaryError if data does not exist.

Attachment.entry

the entry that this attachment is attached to

>>> e = kp.add_entry(kp.root_group, title='foo', username='', password='')

add attachment data to the db
>>> binary_id = kp.add_binary(b'Hello world')

>>> kp.binaries
[b'Hello world']

add attachment reference to entry
>>> a = e.add_attachment(binary_id, 'hello.txt')
>>> a
Attachment: 'hello.txt' -> 0

access attachments
>>> a
Attachment: 'hello.txt' -> 0
>>> a.id
0
>>> a.filename
'hello.txt'
>>> a.data
b'Hello world'
>>> e.attachments
[Attachment: 'hello.txt' -> 0]

list all attachments in the database
>>> kp.attachments
[Attachment: 'hello.txt' -> 0]

search attachments
>>> kp.find_attachments(filename='hello.txt')
[Attachment: 'hello.txt' -> 0]

delete attachment reference
>>> e.delete_attachment(a)

or, delete both attachment reference and binary
>>> kp.delete_binary(binary_id)

38 Chapter 19. Attachments

CHAPTER 20

Miscellaneous

read (filename=None, password=None, keyfile=None, transformed_key=None)

where filename, password, and keyfile are strings. filename is the path to the database, password is the
master password string, and keyfile is the path to the database keyfile. At least one of password and keyfile
is required. Alternatively, the derived key can be supplied directly through transformed_key.

Can raise CredentialsError, HeaderChecksumError, or PayloadChecksumError.

save (filename=None)

where filename is the path of the file to save to. If filename is not given, the path given in read will be used.

password

string containing database password. Can also be set. Use None for no password.

keyfile

string containing path to the database keyfile. Can also be set. Use None for no keyfile.

version

tuple containing database version. e.g. (3, 1) is a KDBX version 3.1 database.

encryption_algorithm

string containing algorithm used to encrypt database. Possible values are aes256, chacha20, and twofish.

create_database (filename, password=None, keyfile=None, transformed_key=None)

create a new database at filename with supplied credentials. Returns PyKeePass object

39

PyKeePass

40 Chapter 20. Miscellaneous

CHAPTER 21

Tests

To run them issue python -m unittest discover in the repository.

41

PyKeePass

42 Chapter 21. Tests

CHAPTER 22

Indices and tables

• genindex

• modindex

• search

43

PyKeePass

44 Chapter 22. Indices and tables

Python Module Index

p
pykeepass.attachment, 7
pykeepass.baseelement, 13
pykeepass.entry, 5
pykeepass.exceptions, 11
pykeepass.group, 3
pykeepass.icons, 9
pykeepass.kdbx_parsing.common, 15
pykeepass.kdbx_parsing.kdbx, 17
pykeepass.kdbx_parsing.kdbx3, 19
pykeepass.kdbx_parsing.kdbx4, 21
pykeepass.kdbx_parsing.pytwofish, 23
pykeepass.kdbx_parsing.twofish, 25
pykeepass.pykeepass, 1

45

PyKeePass

46 Python Module Index

Index

A
AES256Payload (class in pykeep-

ass.kdbx_parsing.common), 15
aes_kdf() (in module pykeep-

ass.kdbx_parsing.common), 16
ARCFourVariantStream (class in pykeep-

ass.kdbx_parsing.common), 15

B
BaseElement (class in pykeepass.baseelement), 13
BinaryError, 11

C
ChaCha20Payload (class in pykeep-

ass.kdbx_parsing.common), 15
ChaCha20Stream (class in pykeep-

ass.kdbx_parsing.common), 15
compute_header_hmac_hash() (in module py-

keepass.kdbx_parsing.kdbx4), 21
compute_key_composite() (in module pykeep-

ass.kdbx_parsing.common), 16
compute_master() (in module pykeep-

ass.kdbx_parsing.common), 16
compute_payload_block_hash() (in module py-

keepass.kdbx_parsing.kdbx4), 21
compute_transformed() (in module pykeep-

ass.kdbx_parsing.kdbx3), 19
compute_transformed() (in module pykeep-

ass.kdbx_parsing.kdbx4), 21
Concatenated (class in pykeep-

ass.kdbx_parsing.common), 15
CredentialsError, 11, 15

D
Decompressed (class in pykeep-

ass.kdbx_parsing.common), 15
DecryptedPayload (class in pykeep-

ass.kdbx_parsing.common), 15
dump_xml() (pykeepass.pykeepass.PyKeePass

method), 1

DynamicDict (class in pykeep-
ass.kdbx_parsing.common), 15

E
encryption_algorithm (pykeep-

ass.pykeepass.PyKeePass attribute), 1
entries (pykeepass.pykeepass.PyKeePass attribute), 1
Entry (class in pykeepass.entry), 5

G
Group (class in pykeepass.group), 3
groups (pykeepass.pykeepass.PyKeePass attribute), 1

H
HeaderChecksumError, 11, 15

K
kdf_algorithm (pykeepass.pykeepass.PyKeePass at-

tribute), 2

P
PayloadChecksumError, 11, 15
PyKeePass (class in pykeepass.pykeepass), 1
pykeepass.attachment (module), 7
pykeepass.baseelement (module), 13
pykeepass.entry (module), 5
pykeepass.exceptions (module), 11
pykeepass.group (module), 3
pykeepass.icons (module), 9
pykeepass.kdbx_parsing.common (module), 15
pykeepass.kdbx_parsing.kdbx (module), 17
pykeepass.kdbx_parsing.kdbx3 (module), 19
pykeepass.kdbx_parsing.kdbx4 (module), 21
pykeepass.kdbx_parsing.pytwofish (mod-

ule), 23
pykeepass.kdbx_parsing.twofish (module),

25
pykeepass.pykeepass (module), 1

47

PyKeePass

R
read() (pykeepass.pykeepass.PyKeePass method), 2
ref() (pykeepass.entry.Entry method), 5
root_group (pykeepass.pykeepass.PyKeePass at-

tribute), 2

S
Salsa20Stream (class in pykeep-

ass.kdbx_parsing.common), 15
save() (pykeepass.pykeepass.PyKeePass method), 2
save_history() (pykeepass.entry.Entry method), 5

T
touch() (pykeepass.entry.Entry method), 5
transformed_key (pykeepass.pykeepass.PyKeePass

attribute), 2
tree (pykeepass.pykeepass.PyKeePass attribute), 2
Twofish (in module pykeepass.kdbx_parsing.twofish),

25
TwoFishPayload (class in pykeep-

ass.kdbx_parsing.common), 15

U
Unprotect() (in module pykeep-

ass.kdbx_parsing.common), 15
UnprotectedStream (class in pykeep-

ass.kdbx_parsing.common), 15
uuid (pykeepass.baseelement.BaseElement attribute),

13

V
version (pykeepass.pykeepass.PyKeePass attribute), 2

X
XML (class in pykeepass.kdbx_parsing.common), 16
xml() (pykeepass.pykeepass.PyKeePass method), 2

48 Index

	pykeepass
	group
	entry
	attachment
	icons
	exceptions
	baseelement
	kdbx_parsing.common
	kdbx_parsing.kdbx
	kdbx_parsing.kdbx3
	kdbx_parsing.kdbx4
	kdbx_parsing.pytwofish
	kdbx_parsing.twofish
	Example
	Finding Entries
	Finding Groups
	Adding Entries
	Adding Groups
	Attachments
	Miscellaneous
	Tests
	Indices and tables
	Python Module Index
	Index

